29.5 C
New York
Thursday, August 11, 2022

Design, fabrication and testing of 3D printed smartphone-based device for collection of intrinsic fluorescence from human cervix

  • Ferlay, J. et al. Global Cancer Observatory: Cancer Today. (International Agency for Research on Cancer, 2020).

  • Ramanujam, N. et al. Fluorescence spectroscopy: A diagnostic tool for cervical intraepithelial neoplasia (cin). Gynecol. Oncol. 52, 31–38 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Zhadin, N. N. & Alfano, R. R. Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: Theory and experiment. J. Biomed. Opt. 3, 171–186 (1998).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, V.T.-C. et al. Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy. Neoplasia 11, 325–332 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thekkek, N. & Richards-Kortum, R. Optical imaging for cervical cancer detection: Solutions for a continuing global problem. Nat. Rev. Cancer 8, 725–731 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mallia, R. J. et al. Laser-induced autofluorescence spectral ratio reference standard for early discrimination of oral cancer. Cancer 112, 1503–1512 (2008).

    PubMed 

    Google Scholar 

  • Georgakoudi, I. et al. Nad (p) h and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Can. Res. 62, 682–687 (2002).

    CAS 

    Google Scholar 

  • Chance, B., Schoener, B., Oshino, R., Itshak, F. & Nakase, Y. Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. nadh and flavoprotein fluorescence signals. J. Biol. Chem. 254, 4764–4771 (1979).

    CAS 
    PubMed 

    Google Scholar 

  • Alfano, R. et al. Laser induced fluorescence spectroscopy from native cancerous and normal tissue. IEEE J. Quantum Electron. 20, 1507–1511 (1984).

    ADS 

    Google Scholar 

  • Alfano, R., Pradhan, A., Tang, G. & Wahl, S. Optical spectroscopic diagnosis of cancer and normal breast tissues. JOSA B 6, 1015–1023 (1989).

    ADS 
    CAS 

    Google Scholar 

  • Ramanujam, N. et al. Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths. Photochem. Photobiol. 64, 720–735 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Chang, S. K. et al. Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer. J. Biomed. Opt. 10, 024031 (2005).

    ADS 
    PubMed 

    Google Scholar 

  • Liu, Q. et al. Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics. J. Biomed. Opt. 16, 037004 (2011).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Majumder, S., Gupta, A., Gupta, S., Ghosh, N. & Gupta, P. Multi-class classification algorithm for optical diagnosis of oral cancer. J. Photochem. Photobiol. B 85, 109–117 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Francisco, A. L. N. et al. Fluorescence spectroscopy for the detection of potentially malignant disorders and squamous cell carcinoma of the oral cavity. Photodiagn. Photodyn. Ther. 11, 82–90 (2014).

    CAS 

    Google Scholar 

  • Jermyn, M. et al. Highly accurate detection of cancer in situ with intraoperative, label-free, multimodal optical spectroscopy. Can. Res. 77, 3942–3950 (2017).

    CAS 

    Google Scholar 

  • Meena, B. L. et al. Intrinsic fluorescence for cervical precancer detection using polarized light based in-house fabricated portable device. J. Biomed. Opt. 23, 015005 (2018).

    ADS 

    Google Scholar 

  • Kumar, P., Singh, A., Kanaujia, S. K. & Pradhan, A. Human saliva for oral precancer detection: A comparison of fluorescence and stokes shift spectroscopy. J. Fluoresc. 28, 419–426 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Gopinath, S. C., Tang, T.-H., Chen, Y., Citartan, M. & Lakshmipriya, T. Bacterial detection: From microscope to smartphone. Biosens. Bioelectron. 60, 332–342 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Koydemir, H. C. et al. Rapid imaging, detection and quantification of giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning. Lab Chip 15, 1284–1293 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Dutta, S., Choudhury, A. & Nath, P. Evanescent wave coupled spectroscopic sensing using smartphone. IEEE Photon. Technol. Lett. 26, 568–570 (2014).

    ADS 

    Google Scholar 

  • Dutta, S. et al. Protein, enzyme and carbohydrate quantification using smartphone through colorimetric digitization technique. J. Biophoton. 10, 623–633 (2017).

    CAS 

    Google Scholar 

  • Jia, M.-Y. et al. The calibration of cellphone camera-based colorimetric sensor array and its application in the determination of glucose in urine. Biosens. Bioelectron. 74, 1029–1037 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Breslauer, D. N., Maamari, R. N., Switz, N. A., Lam, W. A. & Fletcher, D. A. Mobile phone based clinical microscopy for global health applications. PLoS One 4, e6320 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, Z. J. et al. Cell-phone-based platform for biomedical device development and education applications. PLoS One 6, e17150 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gallegos, D. et al. Label-free biodetection using a smartphone. Lab Chip 13, 2124–2132 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Yu, H., Tan, Y. & Cunningham, B. T. Smartphone fluorescence spectroscopy. Anal. Chem. 86, 8805–8813 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Hossain, M. A., Canning, J., Cook, K. & Jamalipour, A. Optical fiber smartphone spectrometer. Opt. Lett. 41, 2237–2240 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • Das, A. J., Wahi, A., Kothari, I. & Raskar, R. Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness. Sci. Rep. 6, 1–8 (2016).

    CAS 

    Google Scholar 

  • Hussain, I., Ahamad, K. U. & Nath, P. Low-cost, robust, and field portable smartphone platform photometric sensor for fluoride level detection in drinking water. Anal. Chem. 89, 767–775 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Hussain, I., Das, M., Ahamad, K. U. & Nath, P. Water salinity detection using a smartphone. Sens. Actuators B Chem. 239, 1042–1050 (2017).

    CAS 

    Google Scholar 

  • Ding, H., Chen, C., Qi, S., Han, C. & Yue, C. Smartphone-based spectrometer with high spectral accuracy for mhealth application. Sens. Actuators A 274, 94–100 (2018).

    CAS 

    Google Scholar 

  • Hong, X., Lu, T., Fruzyna, L. & Yu, B. A dual-modality smartphone microendoscope for quantifying the physiological and morphological properties of epithelial tissues. Sci. Rep. 9, 1–9 (2019).

    Google Scholar 

  • Biswal, N. C., Gupta, S., Ghosh, N. & Pradhan, A. Recovery of turbidity free fluorescence from measured fluorescence: An experimental approach. Opt. Express 11, 3320–3331 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Devi, S., Panigrahi, P. K. & Pradhan, A. Detecting cervical cancer progression through extracted intrinsic fluorescence and principal component analysis. J. Biomed. Opt. 19, 127003 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Meena, B. L., Agarwal, A., Pantola, C., Pandey, K. & Pradhan, A. Concentration of fad as a marker for cervical precancer detection. J. Biomed. Opt. 24, 035008 (2019).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • Shukla, S., Ahirwar, S. & Pradhan, A. A smartphone-based 3d printed prototype for polarized fluorescence collection from human cervix. Proc. of SPIE-OSA 11920, 119201J–1 (2021).

    Google Scholar 

  • Zhang, C. et al. G-fresnel smartphone spectrometer. Lab Chip 16, 246–250 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Bayram, A., Yalcin, E., Demic, S., Gunduz, O. & Solmaz, M. E. Development and application of a low-cost smartphone-based turbidimeter using scattered light. Appl. Opt. 57, 5935–5940 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gupta, S., Raja, V. S. & Pradhan, A. Simultaneous extraction of optical transport parameters and intrinsic fluorescence of tissue mimicking model media using a spatially resolved fluorescence technique. Appl. Opt. 45, 7529–7537 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Palmer, G. M. & Ramanujam, N. Monte-carlo-based model for the extraction of intrinsic fluorescence from turbid media. J. Biomed. Opt. 13, 024017 (2008).

    ADS 
    PubMed 

    Google Scholar 

  • Devi, S., Ghosh, N. & Pradhan, A. A technique for correction of attenuations in synchronous fluorescence spectroscopy. J. Photochem. Photobiol. B 151, 1–9 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Hussain, I. & Bowden, A. K. Smartphone-based optical spectroscopic platforms for biomedical applications: A review. Biomed. Opt. Express 12, 1974–1998 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Stay Connected

    0FansLike
    3,430FollowersFollow
    20,000SubscribersSubscribe

    Latest Articles